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ABSTRACT

This paper is the final in a series of three in which we have discussed
a finite element post-processing technique. Here we shall deal with the
questions of adaptive mesh selection and a posteriori error estimation.
Some numerical examples computed by the FEARS program will be used to i'-

lustrate the approaches taken.
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§1. Introduction

This is the final in a series of three papers in which we have sought
to show how a suitable post-processing of a finite element solution can
yield accurate pointwise values for quantities such as displacements,
stresses, flow rates and stress intensity factors. 1Im [1] and [2] we de-
rived a number of extraction expressions for such quantities in the setting
of some simple model problems, and saw how these expressions could serve as
the bases of effective post-processing techniques. We also carried out
an error analysis for such post-processing computations. This analysis
showed that the accuracy of the post-processed value could be related to
how well the space of finite element functions is able to approximate both
the solution of the basic problem and the solution of a related auxiliary
problem. This auxiliary problem is of the same form as the basic problem,
though with different loading data. (See §2.5 and §83.4 of [1]: and §4 of
[21.)

Hitherto, except for a few qualitative remarks, we have said litt >

concerning the issues of

(i) choosing a finite element subspace for calculating the approxi-

mate solution which is to be subsequently post-processed;

(ii) estimating, a posteriori, the error in a computed post-processed

value.

The significance of both (i) and (ii) is quite clear. In practice,

the goal of any post-processing computation is to obtain a post-processed
value of a specified accuracy at a minimal total computational cost. An
" estimate as in (1i) provides a means of determining when the specified
accuracy has been attained, whereas the choice in (i) largely determines

the efficiency of the overall numerical procedure.
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In this paper we propose a post-processing algorithm. It is based

on the extraction techniques of [1] and [2], and includes features that

enable (i) and (ii) to be handled quite effectively. Our discussion will

be in the context of the "membrane' model problems already introduced ir %5

of [1] and §6 of [2]. 1In these the order of the elements employed it

fixed (square bilinear elements are used), and (i) becomes a matter of

choosing a finite element mesh (i.e., nodal points). The manner in which

we 1ealize (i) and (i1i) will make use of some of the features available in

the FEARS program. 1In §2 of this paper we briefly describe the relevant

features of FEARS. 1In§3.1 we review the error analysis of our earlier papers

[1]) and [2] and show how this analysis suggests some a posteriori error

estimates that can be computed within the FEARS framework. These a

posteriori estimates are the basis of the proposed algorithm,which we des-

cribe in §3.2. Finally, in §4 we return to some of the numerial examples

of §5 of {1] and §6 of [2], this time concentrating on some new aspects

which are related to the issues (i) and (ii).

N R R L




§2. The FEARS program

FEARS is a research oriented, adaptive finite element code developed
at the University of Maryland. A detailed description of the operation
of the program can be found in [3]. For the purposes of this paper, the
following few remarks will suffice. As already explained in [2], FEARS

assumes that the region under consideration has firstly been partitioned

into a number of subregions, each of which is a curvilinear quadrilateral.

Within the program, each of these subregions is transformed by a change
of coordinates into a unit square. The actual finite element modelling
is carried out on these transformed squares. Square bilinear elements
are used. FEARS has an adaptive character: starting from an initial
coarse mesh (usually uniform on each of the transformed squares), the
program automatically selects, in a recursive fashion, a sequence of
"optimal" mesh refinements.

The mesh refinement procedure is based upon a set of non-negative

error 1indicators. An indicator, n say, is associated with each

A
element A. It 1s calculated only using information about the finite
element solution on A 1itself and on the immediately adjacent elements.

These error indicators, when summed over all elements to obtain

(2.1 g = Z n,

all elements
A

say, yield an estimate for some user specified measure of the error in
the finite element solution. Typically, this measure is closely related

to the energy of the error. (Later we shall say a little more. See '3

Y S - Y T T Y Y YT . S L AJ
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and §54.) Each step in the refinement process is directed towards minimizing

the sum ¢ of (2.1) in some '"optimal" fashion. To this end, all elements

& of an existing mesh whose error indicators Na exceed a threshold value
are subdivided. This threshold is determined from some information on the
past history of the refinement process. Of course, the character of the
meshes constructed by FEARS will depend upon which error measure has been
specified. This reflects the fact that the quality of a mesh is not an
absolute property, but must be viewed relative to the ultimate goal of the
finite element calculation. We shall elaborate further upon the point in
§4.

In FEARS the finite element equations are solved by a direct method,
Usually, after each refinement step a full new solution is calculated and
a new set of error indicators is found. However, calculating a new solu-
tion each time is quite expensive, and as it 1is just an intermediate step,
only being used to compute the new error indicators for the next refine-
ment step, one would like to avoid it, if possible. FEARS has a number
of "economy'" modes which do this to varving degrees. In these a full
solution is computed only after a specified increase in the total number
of elements has occurred since the last full solution. After any refine-
ment step between two such full solution phases, the new error indicaters
are only approximated on the basis of the past history of the local
refinement process. This "economy'" mode permits a multi-level refinement
to take place between two full solutions. This possibility is partic-
ularly desirable for efficient operation for problems with severe singu-
larities. Provided the number of such "short passes" between full solu-

tion steps is not too great, the resulting refinement pattern does not

. o - o e e - o
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differ too much from that obtained by the all full solution method, but,

of course, with a considerable saving in computaional cost.

Estimates such as ¢ of (2.1), as well as being the basis of the

automatic mesh refinement feature of FEARS, also provide a means of a
posteriori error estimation. Of course, we cannot expect that the esti-
mate € should yield the exact value of the specified error measure.
However, under suitable assumptions, estimates may be calculated that are

asymptotically exact. That is, if e denotes the exact value of the de-

sired error measure, then
e = g(1l+0(1)) as e > 0.

To illustrate some of the points made above, let us return to

Example A of §6 of [2]. 1In that example we considered the boundary value

problem
Vzw = 0 in @
w = 0 on Fl
(2.2)
dw _
m -9 OP Ty
W
. W T % o Ty

where @ 1s the unit circle slit along the positive x. axis and T

process for this example relied upon error indicators A for which the

@ 1 1’
- F2 and P3 are as shown in Fig. 1. 1In [2] we reported on a sequence

t?' of five adaptively refined meshes that FEARS constructed for this problem
.' -

t;ﬁ (see §6.2 of [2]). We can now be more specific. The mesh refinement

@

k-

e,

ﬁ[.b.
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Figure 1

The region for the model problem (2.2)

sum € of (2.1) is an asymptotically exact estimate for the strain energy

measure e = J IV(w—&)IZdA of the error in the finite element solution

w. As we saw in [2], the meshes so constructed yield a rate of conver-

. 2
gence for the strain energy norm el/ of the error that 1is close to the

1/

theoretically optimal rate of O(N 2), where N 1is the number of

degrees-of-freedom of the finite element model. In contrast, uniform

meshes would only give an O(N-1/8) rate. In Table 1 we have listed
1/2
e1/2 and 61/2 for each of our meshes. Notice the 5175 appears to be
e

converging to 1, as it should, since € 1s an asymptotically exact

estimate for e. For this problem FEARS was executed in an "economy"

mode, so permitting multi-level refinements between full solutions (the
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meshes I-V that we have referred to here and in {2] are a selection of
meshes created by full solution steps). The efficiency of the "economv"
mode can be gauged by the fact that the total solution time for mesh V
and all earlier full solutions was only about 2.5 times the solution

time for mesh V alone.

MESH LABE ! o112 | ;112 ] |
(degrees-of-freedom) true error norm estimated error norm <'/i
e/ 2/e(w /2 2
-
1 .6577 .3747 .57
(56) (30.9%)
1I .5156 .3544 .69
(89) (24.27%)
111 .3875 .3108 .80
(118) (18.2%)
v .2622 L2434 .93
(171) (12.3%)
v .1618 .1638 1.01
» (391) i ( 7.6%) '
| L [ ] i
1/2

TABLE 1. A posteriori estimates of the error in_the energy norm e
for the example of §2. (E) = fQ(le dA) .

—
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§3.1. A Posteriori Error Estimates

For the model problems discussed in §5 of [1] and in [2] we saw that
the difference between the exact value ¢ of some quantity (e.g. dis-
placement, stress, stress intensity factor) associated with the exact
solution  of a problem and an approximate value % obtained by suit-
ably post-processing the finite element solution & could be expressed

as
(3.1) - ¢ = J V(w-w) *V(y-y) dA,
Q

where y and | are the exact and finite element solutions respectively
of an auxiliary problem. This auxiliary problem is of the same form as
the basic problem for w, though with different loading data. The load-
ing data is determined by the particular extraction functions used in the
post-processing calculations.

For any function u, let E(u) denote the '"membrane" strain energy

of u,
2
E(u) = J |vu| “dA.
¥

After a little algebraic manipulation (3.1) may be rewritten as

(3.2) s-F = 7 IEH) = GHD) - E(wmw) - G-iD].
Furthermore, the following inequalities also follow from (3.1),

1/2

/2 E(W‘@) ’

(3.3a) e ~ & =< E(mi) |

(3.3b) 0= 3] < g0 (BGw-d) + o®EG=§))

IA




for any real number o > 0. Notice that whereas (3.2) is an exact ex-
pression for the error b-&, in general (3.3a) and (3.3b) only yield
upper bounds for I@-é]. They fail to take account of any cancellation
in the integral (3.1). The inequality (3.3a) becomes an equality only if
(w -w) and (y - 1) are multiples of one another. (The inequality (3.3b)
is a equality only in the more particular case (w-n) = ta(P=9).)

One way to think of this cancellation phenomena is in terms of the

"angle" between the errors (w-w) and (y-y). Let v be the angle

lying between 0° and 90° for which

[ V(=) -v(p=9)dA|
E(-i) Y 25 (-2

(3.4) cos y

Then, vy = 0°(cos y=1) corresponds to the case for which (3.3a) is an
equality, while vy = 90° (cos y=0) indicates complete cancellation in
the integral (3.1). Continuing the geometrical analogy, we could say
that in the case y = 0°, the errors (w-w) and (y-y) are '"parallel,”
and in the case y = 90° they are "perpendicular."

Means of estimating the quantities appearing on the right hand sides
of (3.2) and (3.3) are available in FEARS. If @ is the finite element

solution of a problem whose exact solution is u, let so(ﬁ) = z ng(ﬂ)
A

be an asymptotically exact estimate for E(u-ii) which is constructed

from elementary error indicators ng(ﬁ). That is,
E(u-a) = eo(ﬁ)(1+0(l)) as E(u-tu) - 0

So (3.2) gives,
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3; (3.5 6 == 2 ) -~ 26 31+ oG + G0,
fﬁ and (3.3) leads to
(3.6a) le - 31 < @Y P aro)

(3.6b) [t - o]

I A

5%(c°<&) + «2e9(9)) (1+o(1))

where the o(l) term is valid as E(w-w) + E(y-§) - O.
The equation (3.5) suggests that the quantity

(3.7) e, = %»[eo(&+@) - OG-0

should provide a good estimate for the error ¢ - ¢ provided the o (1)
term is negligible. However, if the o (1) term in (3.5) is comparable
2 G- G-

to u = then
0 i)+ (G-9)

€1 is no longer reliable. 1In cases

where the angle vy defined in (3.4) is close to 90°, then yu may be quite
small and € could well perform poorly. Turning now to (3.6), we see

that, at least asymptotically, the quantities

3 (3.8a) e, = @2 @2

-

#* 1 ,0,.,, 20

< (3.8b) 63 = 5o (e @ +a'e ()

[ - )

b give upper bounds for |¢ - $|. From what we have said before it can be
ii seen that the extent of the asymptotic overestimation of \® - @\ by

-

is

€9 is closely related to the angle y. For y near 0°, £y

hh Adhabiabirdl
'.!..' BN
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close to 90°, 52 will be a considerable overestimate.
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asymptotically a very sharp estimate for lo - @I, whereas if vy is
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3.2. The Numerical Algorithm

Let us now briefly list some features of the algorithm that we mcn-

tioned in the Introduction:

(a) 1Instead of only solving for &, solutions for both & and
are calculated. This is not as labourious as it may at first seem, since
the auxiliary problem for ¢ and the basic problem for  differ only
in their loading data. Thus, they may be thought of as the solutions of

a multiple load problem.

(b) The pair of solutions ¢ and { are computed for a sequence
of adaptively refined meshes using the FEARS program. The mesh refine-
ment steps are based on the particular choice of error indicators

(3.9) n

, = 0’ @ +a?ad G

where o > 0 is some user chosen constant. The choice (3.9) is obviously
suggested by (3.6b). The logic being that with this choice the adaptive
mesh refinement process is directed by an "optimal" minimization of the

estimate Recall that asymptotically €4 is, in general, only an

63.

upper bound for |¢ - é}, the degree of overestimation being determined

by, amongst other factors, the angle vy and the value of . It would

seem preferable to employ error indicators whose sum provided a sharper

F?i estimate than (3.6b). Unfortunately, the two other estimates €y and
ESZ €9 that we have available cannot be expressed in the form (2.1). In

E?% the case of €1 choosing n, = %{no(&+@) - ng(@-@)) would not alwavs
Ejf ensure that nA > 0. Th~2 estimate €, cannot be conveniently written as
;;1 an element by element sum, though by a proper choice of o the values
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of €y and €, can be made close. We shall say a little more about this

iy 4 w" OOOAL b

later.

(c) Although € and €,

(b), they can still nonetheless be computed as global quantities and be

cannot be used in the role described in

employed as a posteriori error estimates. As such, the provide a means
of stopping the mesh refinement process once sufficient accuracy has been

attained. Of course, ¢ would provide a superior estimate to ¢ as

1 2

long as the above~mentioned loss of reliability associated with angles

near 90° does not occur.

R

T LT T T TRy
v St
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L §4. Numerical Examples
'k §4.1, The membrane Examples of §5 of [1]
-z Let us reconsider the example that we first discussed in §5 of [1}.
" In that example we dealt with the boundary value problem.
v = -1 in 0 = (-1,1)?
‘ (4.1)
) w = 0 on the boundary 30 of .
X
R

Q (0,1)
(-1, 1) —e R(1,1)

o |
,:? : ‘723(0::_|
i% v Q |

oy w=0 & ————29P(1,0)
< 0 (0,0)

(=1,-1) (1,-1)

Figure 2

The region for for the model problem (4.1)
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i’ One of our goals in that example was to find approximate values for the
"stress" by = éﬁg' at P(1,0) (see Fig. 2). 1In [1] we presented three
1

different extraction expressions for this stress. These extraction ex-
pressions differed in the way that they handled the boundary conditions
for the generating function. Here we shall only further discuss the

case (c) of §5.3 of [1]: that is, we consider post-processing calcula-

tions based on the extraction expression

(4.2) by (@) = f v20dA + | +da
Q

I

where

3 |

2. 2" + -

(xl—l) { x;-1 x;-1 xl-l}
2 2 5 )
(xl 1) “4x (xl—l) +1 4+x2

2

The auxiliary problem associated with (4.2) is

-Vze in @

v

(4.3)

s
Pk
Y

!1} = 0 on QQ’

aad)

_—
Y

» N

which, as it should be, is of the same form as (4.1) but with different

however, such a choice would not seem unreasonable from the viewpoint of

:;- right hand sides.

E~_ In [1] we saw that (4.2) led to highly accurate approximations for
o

F - ¢2, even in the case of quite coarse meshes. The numerical results we
- reported there were for a sequence of uniform meshes. At the time we
:,; did not comment on this particular selection of meshes, Qualitatively
@

.

4

.
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the theory we developed in [1] and [2]. The solutions of both the basic
problem (4.1) and the auxiliary problem (4.3) are relatively smooth.
Thus, uniform meshes would seem appropriate. In fact, the adaptive mesh
refinement algorithm that we outlined in §3.2 exactly reproduces this
sequence of meshes, independently of «.

Using the estimates given in §3.1 we are able to estimate the error
in the post-processed value 52. For the above meshes, Table 2 lists a
selection of a posteriori estimates for {@2 - 52| based on (3.7) and

(3.8). Notice that in the case of €1 the ratio of the estimated error

to the true error in ¢ appears to converge to 1 as the mesh size is

2

decreased. This is consistent with (3.5). On the other haund, for .,

and the corresponding ratios each seem to stabilize around values

£3

greater than 1 as the mesh is refined. Again, this is expected on the

basis of (3.6) which shows that £y and €4 will, in general, asymptote

to upper bounds for the error. Let us alsc remark that since €y gives

only a slight overestimation of |®2 -0 and ¢ behaves quite well,

2I 1
we should expect that the angle vy beiween (w-3) and (y-y) 1is not
too close to 90°. 1In Table 2 we have listed an estimate for this angle

which confirms this expectation. Notice also the interesting fact that

vy 1is almost independent of the mesh.
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i I
No. of elements in quarter | f
segment (uniform mesh) 4 16 e 64 ;
SERESSES e s B e = e ::;,:%,_:,:; ooz o :;.‘
Bw i
[y = 31118, |
1 I
. 9 o 8.77 i
relative error in standard 297 167 :
finite element stress value ;
'@2 - ‘bzl ‘ i
error in post-processed 10.495(-3) 2.553(-3) ! 0.637(-3)
stress value
(|q>2 - 62|/|¢2]) (1.57%) (.37%) [ (.089%)
Y ;
angle between (w-w) and 37.1° 37.0° 38.6°
(v-0) (see (3.4))
€,
J
estimated error
(ej/|<l>2 - 4>Z|)
€1 10.351(-3) 2.599(-3) 0.641(-3)
(.986) (1.018) i (1.006)
!
, 12.976(-3) | 3.255(-3) | 0.820(-3)
o8 (1.236) (1.275) | (1.287)
re |
2 s 24.412(-3) | 6.444(-3) | 1.689(-3)
o (2.326) (2.524) (2.651)
o
-
TABLE 2. A posteriori estimates of the error in ?2 for the example lis-
cussed in §4.1. e = %160(&+@) - eo(&—@)i, £, = yo(&)l/zgo(@)l/z,
1,0, ~ .
O ey = (e @) +e0)).
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§4.2. The Slit Membrane Example of §6.2 of [2]

In this section we shall return to Example A of 56 of [2]. We bhave
already used this example in §2 of this paper to illustrate some of the
features of the FEARS program. The governing equations and boundary con-
ditions are given in (2.2) and depicted in Fig. 1. As in [2], let us be
interested in using post-processing techniques to find approximations to

Recall that k was defined to

the leading stress intensity factor k 1

1°

be the coefficient of the leading term in the asymptotic expansion

(4.4) w o=k rl/& sin 8 + O(r3

/4
1 4 )

(k1 = 1.35812)

for w in the vicinity of the slit tip (0,0). Here we shall only treat

post-processing calculations bascd upon the extraction expression

k = PP v
(4.5) k1 Jr (xz“ Ve enw)ds
3
where
b = 2 r_l/4 sin & .
m 4

The expression (4.5) is an instance of what we have been calling a
generalized influence function method. The auxiliary function introduced

in the error analysis of the extraction expression (4.5) is

vzm = 0 ln
v = 0 on T'l
(4.6)
EA
m - 0 on Fz
wo_o®
an - "3n °" '3
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By chance, in this case, we can explicitly solve (4.6) to obtain
(6.7) o=

which is just a multiple of the leading term in the expansion (4.4) of
w. (Of course, we cannot expect to be able to do this so simply in
general.)

As explained in §2, the meshes we considered there and in [2] for

this problem were constructed by FEARS using the error indicator N
”i(&)' (That is, on the basis of minimizing the estimate EO of the strain
energy E(w-g) of the error.) Strictly speaking, this indicator does not
fit into the framework we outlined in (b) of §3.2; though, it can be
thought of as a limiting case as o - 0. However, executing the algorithm
of §3.2 with a number of choices of o leads to sequences of meshes which,
though different from those above, show much the same refinewent charac-
teristics. For this reason, and since we want our numerical results here
to complement those of [2], we shall work with the same sequence of meshes
constructed for this problem in [2].

To try to see why the character of the meshes constructed above should

be independent of a let us rewrite (4.4) as

- 1/4 L)
w = klr sin 4 + W)
(4.8)
= I
= kvt
3/4 N
where w, = O(r ). Let 0 be the finite element solution that would

0

be obtained were the loading in (2.2) such that was the exact solu-

“o
tion. By the linearity of the model problem,

ew——r——
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. n o~ -
W = kl 3 ¢ + AUO

and consequently
~ b ~ ~
4.9) w-w = kl 3 (y=-v) + wy = @y

The function wo is relatively smooth in comparison with ¢, however,

from our point of view the relative magnitude of the factor k1 %
kqm

equally important. If it is sufficiently large, then —%-(w-@) will

is

make the major contribution to the error w - w; while if it is small
enough, then for meshes that are not too fine, the Wy ~ &0 contribution
will dominate. As long as the first case applies, then an "ideal" finite
element mesh would exhibit a severe refinement about the slit tip at
(0,0), while if the latter case applies a more uniform mesh is called
for, at least to begin with. Which case actually occurs in this problem
is clearly demonstrated by the results shown in Table 3—for the level of
refinement encountered there the W ~ &0 contribution is relatively
small. It is not surprising then, that regardless of whether the mesh
refinement process is directed towards minimizing E(w—&), E(w-@) or
some combination E(w—&) + a2 E(w-i), the resulting meshes will not be
significantly different. However, we should point out, and the trend in
Table 3 shows this, that at some point the magnitude of the two components

in (4.9) will become comparable. At that point, the different choices of

a will lead to meshes of significantly different natures.
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= = == '—:wT— EREE = — = 1 l
gk 5 { E(‘f/'i’)l/z E(w =i )1/2
12 0 0
Mesh Label 173 RS VI
E(w-w) E(w-&)
I .98 .21
11 1.02 .22
111 .99 .25
v .96 .34
A% .94 .38 i

TABLE 3. Magnitude of the kl %-(w-&) and (wo-&o) components

of the error (m-&).

In Table 4 we list a number of different a posteriori estimates or
the error in Rl for the above sequence of meshes, along with the exact
values of the error and the angle y which are able to be found analyt-
ically for this particular problem. The apparent asymptotic exactness

of e, 1s consistent with (3.5) and the fact that the angle Yy is

1

rather small. The estimates €, and €4 appear to lead to upper bounds
for Ikl-ﬁll. Since the angle Y 1is near 0° we would expect that ¢,
would, in the limit, give only a slight overestimation of the error.

Again the numerical results in Table 4 are consistent with this.
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Mesh Label 1 1[ 11 e b !
(degrees-of-freedom) (56) (89) (118) (171) (391)
. : a
k=g ! i 1
error in post-processed E ; : !
stress intensity factor ! .193860 , .123570 .067090 .029140 . .010690 '
(ley=ky [ /Ky ) (16.30) | 9.12) | .90 L oan (79%) |
¥ ! ;
angle between (w- ) :
and (y-¢) (see (3.4)) 12.0° 12.5° 14:6° 20.1° ‘ 22.4° .
| '
€. .
J ;
estimated error f {
(ej/lkl—kll) ?
€1 .054270 .055086 .039720 .022281 ' .010163
(.28) (.45) (.59) (.76) | (.95)
£, 059839 | .059906 | .043795 | .025825 | .011576
(.3D) (.48) (.65) (.89) (1.08)
5
€4 .082962 .077077 .058214 .035249 .015912
(.43) (.62) (.87) (1.21) (1.49)

TABLE 4. A posteriori error estimates for |kl—kl] for the example ot 4.2,

~1/2

e, = PG - CGw 1, ¢, = C@20p!2,

=3

= .;. 2@ + 2G4,

N WL I S 1 el

W LN W w1
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:}! i4.3. A Modification of the S1lit Membrane Example of %6.2 of [2]
Let us now alter the basic problem (2.2) that we have been consider-
3 ing in §4.2 by modifying the loading so as to reduce the leading stress
h intensity factor by an order of magnitude or so. Specifically, in place
E- of (2.2) consider
9
.
‘ Vzm* = 0 din ©
b
)
, w*¥ = 0 on I‘l
d
4 (4.10)
r! 3™ = 0 on T
- an 2
p
.
o dw”™ 1 .8
p . 5o - % + 7 (1.3 sin 4) on T3

1/4

which has the exact solution ow* = w + 1.3 r sin %3 where @ 1is the

solution of (2.2). The leading stress intensity factor for w* is

k{ = k, +1.3 = -.,058122,

The algorithm §3.2 was executed for this problem with the following

three different choices of error indicator N, of (3.9) governing the

3

mesh construction process:

I W

e St i B e i g

(a) n, = ng(&*) (This can be thought of as a limiting form of (3.9) as

a + 0, the normalizing factor é%- of (3.9) having no effect on the re-

finement process.)

® n, =2 0G0 + 0G0

© N ng(ﬁ;). (This can be thought as a 1imiting form of (3.9) as o - °.)
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Some numerical results for a selection of meshes obtained using each
of these indicators is reported in Table 5. The first thing to notice from
Table 5 is the very significant differences between the meshes created
using each of the above three indicators. As the "distribution of elements"
columns show, strategy (C) leads to meshes that concentrate elements in the
inner subregions near the slit tip, while (B) and (A) produce progressively

less severe refinement. This effect can be readily explained: 1In place of

(4.9) we now have,

(4.11) w* = o* = kE D (g + (wymig) s

and since [kf[ is now significantly smaller than lkll. we can no longer
regard the (mo—&o) contribution to the error as negligible, as we could
in §84.2. 1Indeed, for the initial uniform mesh I*, from which each of our

strategies (A), (B) and (C) starts,

2 -

/ E (wo-(l)o) 1/2

= ,20 and ‘——‘m = ,98
E(w*-u*®)

it =3 B

1
E(or-5%) /2

which is almost an exact reversal of the situation for mesh I in §4.2
(see Table 3). Therefore, it is to be expected that strategy (A), which

seeks to minimize E(w*-w*); strategy (B), which seeks to minimize

5
2
E(y-y*), will now lead to meshes that are of a quite different nature

(E(u*-a*) + % E(y~y)); and strategy (C), which seeks to minimize

from the very start. The meshes produced by (C) should exhibit the
severest refinement, reflecting the fact that such a refinement is

necessary to approximate the singular function 1 well. On the other

e e e T TN T Y e v - . e
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hand, (A) should produce the most uniform~like mesh, since early on, the
smooth component mo-&o dominates the error (w*-u*), and uniform-like
meshes are sufficient to approximate wg well. The actual meshes pro-
duced are in accord with these expectatioms.

Notice also that the meshes produced by the algorithm seem to have
achieved their respective goals in some "optimal” fashion, at least in
comparison to one another. Among the meshes IIIX, IIIg and IIIé, each of
which has a comparable number of degrees-of-freedom. the mesh IIIX has
the lowest value for E(w*-n*) (see column headed AA), the mesh III;
has the lowest value for %? (E(w*~p*) + %—E(w—w*)) (see column headed

while the mesh III* has the smallest energy error in (y-§) (see

A C

B)
column headed AC).

Let us now turn to the accuracy in the post-processed value Rf for
the various meshes. As we have said previously, this accuracy is dependent
not only on the accuracy of &* but also on the accuracy of . Referring
to Table 5, we see that the meshes IIZ and IIIX, though yielding good
accuracies for w* in the energy. are the worst members from among the
sets II* and III* respectively as far as the accuracy of {* in energy is
concerned. Not surprisingly theun, the accuracy of R; for the meshes
IIX and IIIK is inferior to that for the corresponding meshes constructed
using strategies (B) and (C). The question obviously arises as to what
is the choice of a for use in (3.9) that gives the best accuracy in k;
for a given number of degrees-of-freedom. This is a difficult matter to
analyse in detail, though the results of Table 5 seem to indicate that,

at least fc this problem, the results are rather insensitive to non-zero

choices of a. As a rough guide though, and this is how we chose our
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a= , o could be selected so that for the initial uniform mesh,

1
/5
O(~x 2 0,- ; . . .
¢ (w*) and a ¢ (y) are about equal. The logic behind this choice

being that this y approximately equalizes €3 and the asymptotically

sharper estimate (at least for the initial uniform mesh). Although

€2

we had no need to do so in our calculations, one could possibly change «

during the course of the calculations to ensure that €4 and €9 always
remain close to one another.

Finally, let us say a little about the a posteriori estimates for
|kf-Ef| based upon 1+ €9 and €5+ Some numerical results for the mesh
sequence I*, Ilg and IIIg are reported in Table 6. We also list the
value of the angle vy between the errors (,*-u*) and (y-¢). For
this problem we are able to calculate v exactly. Notice that these
angles are rather close to the critical value vy = 90°. As we explained
in 83.1, for such values of vy we expect the estimate €1 to be un-
reliable due to the significance of the second term of (3.5). In addi-
tion, the estimate €2 should be a considerable overestimation of
|kf—iz|. Our numerical results seem to confirm both these points.

In general of course, we cannot calculate +y, and so in a case such
as the above we could, just on the basis of € be deceived into believ-
ing that there is greater accuracy in RI than 1s actually the case.
However, the fact that = and « differ by an order of magnitude or

1 2

so should act as a warning that we are more than likely in a near critical
I

case. (In fact, the ratio :l is an estimate for cos y.) In such a si-
"2

tuation, 1 should not be trusted, while 62 could be used to gauge the

accuracy of k¥, realizing however, that it is probably a considerable

overestimation of the error.




—L o - e . t. S oy o - S TNV W N

A SN s oen oms o
~ - . a2edl
. o~ Mo -y

€
27
- ' | N : e
Mesh Label [# lfé ¢ slIB
(degrees~of-freedom) (56) (117) B (339)
X 1k
|k1'k1‘
error in post-processed .8357(~2) .2239(-2) L0717(-2)
stress intensity factor
F(R*-R5] /[ W*)) (14.42Z) (3.85%) (1.23%)
171 1
.
angle between (w*-u*) 78.5° 84.0° 82.8°
and (y-y) (see (3.4))
E:v
3
estimated error
ek &
(sj/|k1 kll)
€ .2360(-2) .1566(-2) .0103(-2)
(.28) (.70) (.14)
€, 1.7513(-2) 1.4005(-2) .53170(-2)
(2.10) (6.26) (7.21)
L ! ‘ 1.9150(-2) 1.4042(-2) .5174(=2)
o ; (2.29) (6.27) (7.22)
T L . R B
.
TABLE 6. A posteriori estimates for lkf—kfl for the example of §4.3.
ey = 210Gy - @], e = Pant2 0.
* /5
iy 23 0k 1 0.
- by =g (€ )+5£ ).
v
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§5. Concluding Remarks

Our main intention in this paper was to examine the behaviour of the
algorithm of §3.2 in some model post-processing applications, concentrating
especially on the mesh selection and error estimation features of the algorithm.
As far as accuracy of the post-processed value was concerned, the particular
examples dealt with here proved rather insensitive to the choice
of a 1in the error indicator (3.9). In our most extreme example the spread
in accuracy for the same number of degrees-of-freedom, was only by a fac-
tor of 2. Whether this insensitivity is a property to be expected in
general is an open question at the moment. However, we can at least say
from a theoretical point of view that some dependence on o« 1is to be
expected whenever the basic and auxiliary problems have solutions with dif-
ferent "smoothness' characteristics.

Our examples also show that, except for the critical casg when | 1is
near 90°, the error estimates El and ?2 perform well asymptotically.

The occurrence of the critical case can be detected numerically by the

€

N

|

fact that > 5, say. In this critical case, even though ¢ appears

1

[n}
[u—

unreliable, €2 still seems to provide a useable estimate, albeit an

overly pessimistic one.
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emphasis on the numerical treatment of linear and nonlinear
differential equations and problems in linear and nonlinear algebra.
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To provide a limited consulting service in all areas of numerical
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Science Departments. This includes active collaboration with government
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